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Abstract We study and review geometrical properties of the set of the prob-
abilities dominated by a submodular coherent upper probability (a possibility
measure, in particular) on a finite set. We mention that there exists a polyno-
mial algorithm for vertex enumeration. A new upper bound for the number
of vertices in case of possibility measures is derived.
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1 Introduction

In this contribution we study and review geometrical properties of the set of
the probabilities dominated by a submodular coherent upper probability on
a finite set. The aim is to identify those geometrical and algebraical properties
that lead to the existence of efficient algorithms for processing the imprecise
probability. One of the tasks of eminent importance is that of recovering the
extreme points of the dominated set of probabilities or, at least, estimating
their number. The class of imprecise probabilities for which both of these
tasks are solvable are submodular coherent upper probabilities. We make
an effort to single out some of its subclasses (such as possibility measures) to
show that they exhibit additional properties from the geometrical viewpoint.

Basic concepts of imprecise probabilities [14] and possibility theory [4] are
recalled in Sect. 2. The structure of cores is investigated in Sect. 3 and con-
clusions are in Sect. 4. In the paper we use definitions and results concerning
polytopes (see [18], for example).
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2 Basic Notions

Let N = {1, . . . , n} be a finite set with n ≥ 2 and let 2N denotes the set
of all subsets of N . A set function on 2N is a mapping µ : 2N → R with
µ(∅) = 0. We say that a set function is monotone when µ(A) ≤ µ(B) for
every A,B ∈ 2N such that A ⊆ B; it is called submodular (or 2-alternating
capacity) if the inequality µ(A ∪ B) + µ(A ∩ B) ≤ µ(A) + µ(B) holds for
every A,B ∈ 2N . When P is a probability measure on 2N , then p denotes
the corresponding probability distribution on N , that is, the n-dimensional
vector whose i-th component pi is P ({i}), for every i ∈ N . For any set
function µ with µ(N) = 1, the set M(µ) of probability distributions p on N
with P (A) ≤ µ(A), for every A ⊆ N , is called the core (or credal set) of µ.
Hence the core M(µ) is the set of n-dimensional vectors p ∈ Rn satisfying
the conditions

∑

i∈A

pi ≤ µ(A), for every A ∈ 2N , (1a)

pi ≥ 0, i = 1, . . . , n, (1b)
n∑

i=1

pi = 1. (1c)

Hence M(µ) is a (possibly empty) convex polytope in Rn of dimension at
most n − 1. By extM(µ) we denote the set of all extreme points (vertices)
of M(µ), which is always finite because of the finite number of the affine
constraints (1).

A coherent upper probability is a set function µ : 2N → [0, 1] such that
µ(A) = sup {∑i∈A pi | p ∈ M(µ)}, for every A ∈ 2N , and M(µ) 6= ∅. It
can be deduced from a result of Walley [15, p. 14] that every submodular
monotone set function µ with µ(N) = 1 is a coherent upper probability.
On the contrary not every coherent upper probability is submodular—see [7,
Remark 5.3]. A possibility measure is a set function Π : 2N → [0, 1] such
that Π(N) = 1, and where for every A,B ∈ 2N , it holds that Π(A ∪ B) =
max(Π(A),Π(B)). A possibility distribution on N is the n-dimensional vector
π whose i-th coordinate πi is Π({i}), for every i ∈ N . Every possibility
measure is submodular monotone and thus a coherent upper probability.

3 Geometry of Cores

The polytope M(µ) is completely determined as the convex hull of the set
of its vertices extM(µ). Vertex enumeration is the problem of generating
all the vertices of a polytope given as an intersection of finitely many half-
spaces. This is a fundamental problem in computational geometry, which is
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in general algorithmically highly nontrivial. Nevertheless there exist efficient
techniques for certain classes of polytopes, which we mention in this section.
It is therefore desirable to study the geometrical structure of the cores for
particular classes of coherent upper probabilities in order to exploit their spe-
cial properties. Since the time and the space complexity of the enumeration
algorithms can also be judged a priori by estimating the number of vertices
of the core, a goal in itself is to find some upper bounds for the number of
vertices.

3.1 Cores of Submodular Coherent Upper Probabilities

The next theorem, which is considered to be well-known, gives a characteri-
zation of the core of submodular coherent upper probabilities. As far as the
knowledge of the author goes, it can be traced back to Edmond’s result [5]
concerning the so-called base polyhedra in polymatroid1 theory [6]. Similar
results appeared in coalition game theory and imprecise probabilities too, cf.
[12] and [2]. The formulation below is based on the polymatroid version of
the theorem from [6, Section 3.3].

Theorem 1. Let µ be a submodular coherent upper probability on 2N . Then
M(µ) coincides with the set of vectors p ∈ Rn satisfying the conditions (1a)
and (1c). A vector p ∈ Rn is an element of extM(µ) if and only if there
exists an (n + 1)-tuple of sets A0, . . . , An belonging to 2N such that

∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = N,

where Ai \Ai−1 = {ai}, for each i = 1, . . . , n, and

pai = µ(Ai)− µ(Ai−1), for each i ∈ N. (2)

The complete description of the facial structure of M(µ) can be found in
[6, Theorem 3.30] (see also [13]). Note that the above theorem enables to
dispense completely with the nonnegativity conditions (1b) defining the core
M(µ). This result justifies the game-theoretic terminology employed when
calling the setM(µ) “core”: for every submodular coherent upper probability
µ, the set M(µ) coincides precisely with the core of the game µ as studied in
coalition game theory. This fact however depends on the economic interpre-
tation of the game µ since the game-theoretic core is usually defined with the
reversed inequality in (1a) provided that the values of µ are profits resulting
from the cooperation. The present inequality in (1a) thus implies that the
value µ(A) should be thought of as a loss inflicted to a coalition A rather

1 A polymatroid is a pair (µ, 2N ), where µ is a submodular monotone set function on 2N .
When µ(N) = 1, then a so-called base polyhedron of the polymatroid (µ, 2N ) is precisely
the core of µ in the sense of (1).
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than the profit generated by the coalition A. While the latter interpretation
of coalition games is more common (cf. [12]), the first one also appears in the
literature (for example, in the foundational Aubin’s paper [1] about games
with fuzzy coalitions).

Formula (2) also leads to a very inefficient algorithm for enumerating the
vertices of M(µ) that is based on generating all permutations of the ele-
ments of the set N . There exists, however, a vertex enumeration technique
by Zhan [17], which is well-tailored to cores of submodular coherent upper
probabilities. Zhan’s algorithm is polynomial and enumerates all the vertices
of M(µ) in O(n3| extM(µ)|) time and in O(n2) space. We refrain from de-
scribing even the basic ideas of this sophisticated algorithm, which generalizes
several enumeration methods. An interested reader is referred to [17] for the
comprehensive details.

Submodularity is one of the properties enhancing the performance of the
enumeration algorithms. Another property of a coherent upper probability
leading to tractable computations is rather an intrinsic geometric property
of its core: a d-dimensional polytope is called simple when each vertex is
contained in precisely d facets. The d-dimensional cube or simplex are ex-
amples of simple polytopes; the pyramid with a non-triangular base is not
a simple polytope. Simplicity of the core enables us to recover the vertices
efficiently since there exist enumerating algorithms running in polynomial
time per vertex for the class of all simple polytopes (see [8] for details and
references therein). The author of this paper proved recently in [8] that the
core of every possibility measure is a simple polytope (see also Theorem 2 in
this paper).

A very special core geometry arises from the example of Wallner in [16,
p.347, Fig.2]: put µ(A) = 1 − f

(n−|A|
n

)
, where f : [0, 1] → [0, 1] is a strictly

convex function with f(0) = 0, f(1) = 1. Namely, it is not difficult to prove
that the core M(µ) investigated in that example is combinatorially equiva-
lent2 to the so-called permutahedron. Let Sn be the set of all permutations
of N . An (n−1)-dimensional permutahedron is the convex hull of the set
{(σ(1), . . . , σ(n)) | σ ∈ Sn}. The permutahedra are very rare among all poly-
topes: every (n−1)-dimensional permutahedron is a simple polytope that is
an affine projection of the

(
n
2

)
-dimensional cube [18, p.17].

It follows directly from Theorem 1 there are at most n! vertices in the core
of every submodular coherent upper probability. More generally, the result of
Wallner [16, Theorem 5.13] even shows that the submodularity condition can
be relaxed so the upper bound is n! for every coherent upper probability. The
next section is devoted to possibility measures for which some upper bounds
for the number of vertices of their cores will be derived.

2 We say that two polytopes are combinatorially equivalent if there exists an order-
preserving bijection between their face lattices.



Geometry of Cores of Submodular Coherent Upper Probabilities. . . 5

3.2 Cores of possibility measures

When π is a possibility distribution such that πi = 0 for every i ∈ I with
I ⊂ N , then, by the simple projection argument, the core of the possibility
measure Π can be identified with the core of the possibility measure Π ′ such
that π′ is defined as the restriction of π to N \ I. Without loss of generality,
we start with the following convention.

Convention. From now on we assume that 0 < π1 ≤ · · · ≤ πn = 1.

Moral proved in [10] that p ∈M(Π) if and only if p is a probability distribu-
tion such that

∑k
j=1 pj ≤ πk, for each k = 1, . . . , n. The cores of possibility

measures were characterized in [8], where the proof of Theorem 2 can be
found. Put

S = {i ∈ {1, . . . , n− 2} | πi+1 > πi} ∪ {n− 1}.

Theorem 2. The core M(Π) of a possibility measure Π is a simple (n−1)-
dimensional polytope such that p ∈M(Π) if and only if

k∑

j=1

pj ≤ πk, k ∈ S, (3a)

pi ≥ 0, i = 1, . . . , n− 1, (3b)

pn = 1−
n−1∑

i=1

pi. (3c)

Moreover, the polytope M(Π) has n − 1 + |S| facets given by K ∩M(Π),
where K is either {p ∈ Rn | pi = 0} or {p ∈ Rn | ∑k

j=1 pj = πk}, for each
i = 1, . . . , n− 1 and for each k ∈ S, respectively.

The representation of M(Π) by the system (3) is irreducible, that is, re-
moving any inequality or equation from (3) changes the set M(Π). While
the irreducible representation (3) is easily constructed3 for every possibility
measure, it can be shown that this is not the only irreducible representation
of M(Π). The representation by system (3) is however useful for obtaining
some upper bounds for the number of vertices. Miranda et al. [9] derived
the exponential upper bound 2n−1 for the number | extM(Π)| of vertices of
any possibility measure Π. Using only the simplicity of M(Π), the following
lower bound and the upper bound for | extM(Π)| were obtained in [8]4:

|S|(n−2)+2 ≤ | extM(Π)| ≤
(

n− 2 + |S| − r1

r2

)
+

(
n− 2 + |S| − r2

r1

)
, (4)

3 Detecting whether an inequality is redundant in a description of a polytope is a nontrivial
problem, cf. [18, p. 48].
4 Unfortunately, the formula for the upper bound is misprinted in [8, Theorem 2].
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where r1 is the greatest integer such that r1 ≤ n−2
2 , and r2 is the greatest

integer such that r2 ≤ n−1
2 . It was shown in [8] that the upper bound from

(4) is not uniformly better than the exponential bound. In the sequel we will
show that there exists an easily computable upper bound that is always lower
than the exponential bound. To this end, put i0 = 0 and let i1, . . . , i|S| denote
the elements of S such that ij < ij+1, for each j = 1, . . . , |S| − 1.

Theorem 3. If M(Π) is the core of a possibility measure Π, then

| extM(Π)| ≤ 2|S|
|S|∏

j=1

(ij − ij−1). (5)

The expression on the right-hand side of (5) is always smaller or equal to
2n−1 with the equality holding when Π is such that πi < πi+1, for each
i = 1, . . . , n− 2.

Proof. It follows from Theorem 2 and the definition of a vertex that there
is a one-to-one correspondence between the vertices of M(Π) and uniquely
solvable systems of n− 1 linear equations selected from

k∑

j=1

pj = πk, k ∈ S, (6a)

pi = 0, i = 1, . . . , n− 1. (6b)

Hence it suffices to bound from above the total number of such uniquely
solvable systems. Note that (6a) can be equivalently written as

p1 + . . . + pi1 = πi1

pi1+1 + . . . + pi2 = πi2 − πi1

. . . (7)
pi|S|−1+1 + . . . + pi|S| = πi|S| − πi|S|−1

A uniquely solvable linear system arising from (7) by appending arbitrarily
chosen equations from (6b) is called an initial linear system. First, we will
count the total number of initial linear systems. Since the right-hand sides
of (7) are positive due to our Convention, it follows that precisely one variable
in each linear equation of (7) must be nonzero. This means that there are

i1(i2 − i1) . . . (i|S| − i|S|−1) =
|S|∏

j=1

(ij − ij−1) (8)

initial linear systems.
To finish the proof of (5), observe that every uniquely solvable system of

n − 1 linear equations chosen from (6a)-(6b) corresponds to precisely one
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initial linear system in which some of the |S| equations from (7) are possi-
bly interchanged with those from (6b). Since there are precisely 2|S| of all
interchanges, there can be at most 2|S| of the uniquely solvable systems re-
sulting in this way from an initial linear system. Combining this with (8),
the inequality (5) follows.

In order to prove the second assertion of the theorem, observe that∑|S|
j=1(ij − ij−1) = i|S| = n− 1. We obtain

2|S|
|S|∏

j=1

(ij − ij−1) =
|S|∏

j=1

2(ij − ij−1) ≤
|S|∏

j=1

2ij−ij−1 = 2
∑|S|

j=1(ij−ij−1) = 2n−1,

since 2p ≤ 2p for every positive integer p. ut
In general, the upper bound from Theorem 3 is not better than the upper

bound from (4) and vice versa. Note that the first part of the proof of The-
orem 3 is based on a particular vertex enumeration algorithm, which can be
used to recover the vertices when n and |S| are rather small. However, this
technique is of a very limited use as it recovers the vertices in time exponential
in |S|.

4 Conclusions

In the paper we presented the algebraical and the geometrical properties of
imprecise probabilities that facilitate computations with their cores. Namely,
there exist polynomial algorithms for vertex enumeration of both submodular
coherent upper probabilities and coherent upper probabilities whose core is
a simple polytope. The upper bounds from Sect.3.2 provide the preliminary
judgment on the performance of such algorithms. There are many theoreti-
cal and practical facets of imprecise probabilities in which the computational
properties of the core play a crucial role. For example, a concept of (condi-
tional) independence can be defined with the help of extreme points of the
core [3, 11].

An interesting open question is to describe the class of coherent upper
probabilities whose cores are simple polytopes.
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